Extracting properties of dense nuclear matter from heavy-ion collisions

Agnieszka Sorensen

Institute for Nuclear Theory, University of Washington

August 19, 2024 14th International Conference on Nucleus-Nucleus Collisions

Heavy-ion collisions = window on properties of dense nuclear matter

Heavy-ion collisions = window on properties of dense nuclear matter

Sketch of a heavy-ion collision evolution and development of flow

Constraints on the EOS come from comparisons to transport models

Agnieszka Sorensen

197Au+197Au @ 0.15-10 GeV/u $\sqrt{s_{\rm NN}} = 1.95 - 4.72 \, {\rm GeV}$

observables: proton flow (Plastic Ball, EOS, E877, E895) model used: **pBUU** w/ nucleons, Δ , N*(1440), pions; EOS parametrized by K₀; momentum dependence P. Danielewicz, R. Lacey, W. G. Lynch, Science **298**,1592–1596 (2002)

Standard way of modeling the EOS: Skyrme potential

Agnieszka Sorensen

The most common form of the EOS is the "Skyrme potential": $U(n_B) = A\left(\frac{n_B}{n_0}\right) + B\left(\frac{n_B}{n_0}\right)^{\tau}$

P. Danielewicz, R. Lacey, W. G. Lynch, Science 298, 1592–1596 (2002), arXiv:nucl-th/0208016

Standard way of modeling the EOS: Skyrme potential

P. Danielewicz, R. Lacey, W. G. Lynch,

VDF model: relativistic potentials with two 1st order phase transitions

A. Sorensen, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635

Results from UrQMD with (non-relativistic) VDF

J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch, M. Bleicher, Eur. Phys. J. C 82, 10, 911 (2022) arXiv:2208.12091

Results from UrQMD with (non-relativistic) VDF

J. Steinheimer, A. Motornenko, **A. Sorensen**, Y. Nara, V. Koch, M. Bleicher, Eur. Phys. J. C **82**, 10, 911 (2022) arXiv:2208.12091

Bayesian analysis: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential $U(n_B)$:

 $U(n_B) = \begin{cases} U_{\text{Sk}}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases}$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

Bayesian analysis: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential $U(n_B)$:

 $U(n_B) = \begin{cases} U_{\text{Sk}}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases}$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

Bayesian analysis: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential $U(n_B)$:

 $U(n_B) = \begin{cases} U_{\rm Sk}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases} \stackrel{\bigcirc}{\to}$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

The maximum a posteriori probability (MAP) parameters are $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$

Agnieszka Sorensen

Bayesian analysis of BES flow in BUU with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

The maximum a posteriori probability (MAP) parameters are $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$

Agnieszka Sorensen

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

EOS of symmetric nuclear matter: selected (*few*) results

Intriguing results from analyses of astrophysical observations

Recent astrophysical measurements suggest NS EOS may have a nontrivial density-dependence

Y. Fujimoto, K. Fukushima, K. Murase, Phys. Rev. D 101, 5, 054016 (2020), arXiv:1903.03400 N. Yao, A. Sorensen, V. Dexheimer, J. Noronha-Hostler, arXiv:2311.18819 H. Tan, T. Dore, V. Dexheimer, J. Noronha-Hostler, N. Yunes, Phys. Rev. D 105 2, 023018 (2022)

Which of the allowed NS EOSs are compatible with heavy-ion collision measurements?

Use symmetry energy parameters exploring the allowed parameter space:

$$\mathcal{E}_{\rm HIC} = \mathcal{E}_{\rm NS} - n_B \left[\frac{E_{\rm sym}}{2} + \frac{L_{\rm sym}}{3} \left(\frac{n_B}{n_0} - 1 \right) + \frac{K_{\rm sym}}{18} \right]$$

\approx	Sy	/m	nm	let	ry	e
	•				•	

Coefficient	Range	Step size	
$E_{\rm sym,sat}$	27-40	1 MeV	
$L_{ m sym,sat}$	30 - 130	$10 { m MeV}$	
$K_{ m sym,sat}$	-220 - 180	$50 { m ~MeV}$	
$J_{ m sym,sat}$	-200 - 800	100 MeV	

Agnieszka Sorensen

N. Yao, A. Sorensen, V. Dexheimer, J. Noronha-Hostler, arXiv:2311.18819

H. Tan, T. Dore, V. Dexheimer, J. Noronha-Hostler, N. Yunes, Phys. Rev. D 105 2, 023018 (2022)

Use symmetry energy parameters exploring the allowed parameter space:

$$\mathcal{E}_{\text{HIC}} = \mathcal{E}_{\text{NS}} - n_B \left[\underbrace{E_{\text{sym}}}_{\substack{\text{sym}, \text{sat}}} + \frac{L_{\text{sym}}}{3} \left(\frac{n_B}{n_0} - 1 \right) + \frac{K_{\text{sym}}}{18} \right]$$

$$\frac{\text{Coefficient}}{\frac{\text{Range}}{\text{Step size}}} \xrightarrow{\text{Range}} \frac{\text{Step size}}{1 \text{ MeV}}$$

$$\frac{1}{L_{\text{sym,sat}}} \xrightarrow{\text{27-40}} 1 \text{ MeV}}{30 - 130 \text{ 10 MeV}}$$

$$\frac{\text{Symmetry end}}{100 \text{ MeV}}$$

Agnieszka Sorensen

N. Yao, A. Sorensen, V. Dexheimer, J. Noronha-Hostler, arXiv:2311.18819

"Minimal" and "maximal" EOSs from each family tested against heavy-ion measurements:

Agnieszka Sorensen

EOS	$n_{ m sat}~[{ m fm}^{-3}]$	$B [{ m MeV}]$	$K_0 \; [{ m MeV}]$	$c_s^2(n_B=n_{ m sat})$
eos1 min	0.175	-14.6	200.5	0.024
eos1 max	0.171	-17.8	325.9	0.039
$\cos 2 \min$	0.167	-14.6	206.7	0.025
$\cos 2 \max$	0.161	-16.9	214.8	0.026
$\cos 3 \min$	0.153	-14.8	220.2	0.027
$\cos 3 \max$	0.162	-16.5	201.7	0.024

N. Yao, A. Sorensen, V. Dexheimer, J. Noronha-Hostler, arXiv:2311.18819

"Minimal" and "maximal" EOSs from each family tested against heavy-ion measurements:

Agnieszka Sorensen

muses

Bayesian analysis of flow data in UrQMD

proton mean transverse kinetic energy $\langle m_T \rangle - m_0$: $\sqrt{s_{\rm NN}} \in [3.83, 8.86] \text{ GeV}$

proton elliptic flow v_2 at midrapidity: $\sqrt{s_{\rm NN}} \in [2.24, 4.72] \text{ GeV}$

13 points = excluding $\langle m_T \rangle - m_0$ at the two lowest collision energies $\sqrt{s_{\rm NN}} = 3.83, 4.29 \,\,{\rm GeV}$

— — MEAN **—**—**—** MAP 250200 [MeV]150Experimental inference 13 data points 100 50 -50^{L}_{0}

300

Agnieszka Sorensen

M. Omana Kuttan, J. Steinheimer, K. Zhou, H. Stoecker, Phys. Rev. Lett. **131** 20, 202303 (2023) arXiv:2211.11670

$$V(n_B) = \begin{cases} V_{\text{CMF}} & n_B \le 2n_0 \\ \sum_{i=1}^7 \theta_i \left(\frac{n_B}{n_0} - 1\right)^i + C & n_B > 2n_0 \end{cases}$$

EOS of symmetric nuclear matter: selected (*few*) results

A. Sorensen et al., Prog. Part. Nucl. Phys. 134, 104080 (2024) arXiv:2301.13253

Agnieszka Sorensen

. Du, A. Sorensen, M. Stephanov, Int. J. Mod. Phys. E (available online), arXiv: 2402.10183

Bayesian analysis of heavy-ion collision and astronomical data

Determination of the equation of state from nuclear experiments and neutron star observations

Chun Yuen Tsang, ManYee Betty Tsang [™], William G. Lynch, Rohit Kumar & Charles J. Horowitz

Symmetric matter Constraints HIC(DLL) HIC(FOPI) GMR

Asymmetric matter Constraints Nuclear structure α_D PREX-II

Nuclear masses Mass(Skyrme) Mass(DFT)IAS

Heavy-ion collisions HIC(Isodiff) HIC(n/p ratio) $HIC(\pi)$ HIC(n/p flow)

Astronomical Constraints LIGO *Riley PSR J0030+0451 *Miller PSR J0030+0451 *Riley PSR J0740+6620 *Miller PSR J0740+6620

Agnieszka Sorensen

C.-Y. Tsang, M. B. Tsang, W. G. Lynch, R. Kumar, C. J. Horowitz, Nature Astron. 8 3, 328-336 (2024) arXiv:2310.11588

Bayesian analysis of heavy-ion collision and astronomical data

Determination of the equation of state from nuclear experiments and neutron star observations

Chun Yuen Tsang, ManYee Betty Tsang [™], William G. Lynch, Rohit Kumar & Charles J. Horowitz

10²

//fm³)

Symmetric matter $\overline{\mathrm{HIC}(\mathrm{DLL})}$ nit (1 Or i GMR

How would the result change if new constraints were used as the input?

Asymmetric n Constraints

Nuclear struct α_D PREX-II

Nuclear masses Mass(Skyrme) Mass(DFT)IAS

Heavy-ion collisions HIC(Isodiff) HIC(n/p ratio) $HIC(\pi)$ HIC(n/p flow)

Astronomical Constraints LIGO *Riley PSR J0030+0451 *Miller PSR J0030+0451 *Riley PSR J0740+6620 *Miller PSR J0740+6620

Agnieszka Sorensen

- momentum-dependence

- in-medium cross-sections also:
- cluster production
- meson potentials

- ...

- initial state (e.g., short-range correlations)

C.-Y. Tsang, M. B. Tsang, W. G. Lynch, R. Kumar, C. J. Horowitz, Nature Astron. 8 3, 328-336 (2024) arXiv:2310.11588

DLL is still the state-of-the-art result...

Summary

- Heavy-ion collisions at low energies probe multiple fundamental properties of nuclear matter
 - density, isospin, and momentum dependence of nuclear interactions
 - in-medium cross sections
 - cluster production mechanisms

- ...

- How to reconcile various effects affecting the extraction of the EOS? (momentum dependence, in-medium cross sections, cluster production, ...) Can we move away from phenomenology and toward guidance from theory? (needed *also* to ease the computational cost) Some ideas in

A. Sorensen et al., Prog. Part. Nucl. Phys. **134**, 104080 (2024) arXiv:2301.13253

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions *

Agnieszka Sorensen¹, Kshitij Agarwal², Kyle W. Brown^{3,4}, Zbigniew Chajecki⁵, Paweł Danielewicz^{3,6}, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W. Holt^{9,10}, Matthias Kaminski¹¹, Che-Ming Ko^{9,10}, Rohit Kumar³, Bao-An Li¹², William G. Lynch^{3,6}, Alan B. McIntosh¹⁰, William G. Newton¹², Scott Pratt^{3,6}, Oleh Savchuk^{3,13}, Maria Stefaniak¹⁴, Ingo Tews⁸, ManYee Betty Tsang^{3,6}, Ramona Vogt^{15,16}, Hermann Wolter¹⁷, Hanna Zbroszczyk¹⁸

nuclear physics? (e.g., strangeness interactions important for physics of neutron stars)

Agnieszka Sorensen

• Transport models needed for interpreting experiments (STAR FXT, HADES, FRIB, CBM, FRIB400)

• Besides the extraction of the EOS, how can low-energy heavy-ion collisions inform other sub-fields in

Thank you for your attention!

