The QCD Phase Diagram and Beam Energy Scan Physics: A Theory Overview

Agnieszka Sorensen

Facility for Rare Isotope Beams Michigan State University

October 10, 2024 2024 Fall Meeting of the APS Division of Nuclear Physics

The idea to probe the QCD phase diagram with heavy-ions is not new...

1600

PHASE DIAGRAM OF NUCLEAR MATTER *

Agnieszka Sorensen

LRP 2007

The QCD phase diagram: what do we know?

LQCD EOS: $T_{pc}(\mu_B = 0) \approx 155 \text{ MeV}$

S. Borsányi et al., Phys. Lett. B 730 99–104 (2014) arXiv:1309.5258

Agnieszka Sorensen

LRP 2007

Lattice QCD EOS at finite μ_R

The QCD phase diagram: what happens at at high μ_R ?

Models predict a 1st order phase transition at large $\mu_B \sim \text{large } n_B$

Agnieszka Sorensen

LRP 2007

The EOS of dense nuclear matter in heavy-ion collisions

Relativistic viscous hydrodynamic simulations with LQCD EOS: amazing agreement with data from high-energy collisions

C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. **110** (2013) 1, 012302, arXiv:1209.6330

systems equilibrate fast* = hydro applies

* and even if they don't, hydrodynamic attractors lead to hydro solutions

Hadronic transport simulations:

systems out of
equilibrium
= microscopic
approach needed

J. Mohs, S. Ryu, H. Elfner, J. Phys. G **47** (2020) 6, 065101 arXiv:1909.05586

Stages of a heavy-ion collision

Agnieszka Sorensen

P. Sorensen, Quark-gluon plasma 4, 323–374 (2010) arXiv:0905.0174

impact ~ initial state collision geometry collision energy nuclear structure

expansion hydrodynamics: driven by the EOS transport: driven by the EOS & scatterings

hadronization

loss of information?

hadronic evolution & freeze-out

MADAI collaboration, http://madai.us

Objective of BES: the EOS and the phase diagram

Use heavy-ion collisions to study the QCD EOS = extract equilibrium bulk properties

Is it even possible??? What we learned at top RHIC energies suggests YES!

Phys. Rev. Lett. **114** 202301 (2015), arXiv:1501.04042

Agnieszka Sorensen

from an extremely small (~ 10^{-14} m across) and extremely short-lived (~ 10^{-22} s) system using phenomenological simulations

> EOS constrained by Bayesian analysis of heavy-ion collisions at top RHIC energy $(\mu_R \approx 0)$ agrees with LQCD

> No/Scarce theory predictions at finite μ_R Unique occasion to guide theory and understanding of QCD by extracting the EOS from new experimental data

Input to hydrodynamics: EOS with 3D-Ising model critical point

with strangeness-neutrality:

J.M. Karthein et al., Eur. Phys. J. Plus **136** 6, 621 (2021) arXiv:2103.08146

Agnieszka Sorensen

with spinodal regions:

J.M. Karthein, V. Koch, C. Ratti arXiv:2409.13961

EOS is only one of many aspects of hydrodynamics

low collision energy = prolonged initial stage:

C. Shen, B. Schenke, Phys. Rev. C. 97 (2), 024907 (2018) arXiv:1710.00881

parametric initial distributions for energy and baryon density:

P. Bozek, I. Wyskiel, Phys. Rev. C. 81, 054902 (2010) arXiv:1002.4999

x (fm) 2 0 η_s

L. Du, C. Shen, S. Jeon, C. Gale, Phys. Rev. C. 108(4), L041901 (2023) arXiv:2211.16408

Agnieszka Sorensen

multiple conserved charges initialized with ICCING (Initial Conserved Charges in Nuclear Geometry)

P. Carzon et al., Phys. Rev. C. 105(3), 034908 (2022) arXiv:1911.12454 P. Carzon et al., Phys. Rev. C. 108 (6), 064905 (2023) arXiv:2301.04572

EOS is only one of many aspects of hydrodynamics

L041901 (2023) arXiv:2211.16408

low collision energy = prolonged initial stage:

Agnieszka Sorensen

054902 (2010) arXiv:1002.4999

multiple conserved charges initialized with ICCING (Initial Conserved Charges in Nuclear Geometry)

P. Carzon et al., Phys. Rev. C. 105(3), 034908 (2022) arXiv:1911.12454 P. Carzon et al., Phys. Rev. C. 108 (6), 064905 (2023) arXiv:2301.04572

Constraints on the EOS come from comparisons to transport models

Agnieszka Sorensen

197Au+197Au @ 0.15-10 GeV/u $\sqrt{s_{\rm NN}} = 1.95 - 4.72 \, {\rm GeV}$

observables: proton flow (Plastic Ball, EOS, E877, E895) model used: **pBUU** w/ nucleons, Δ , N*(1440), pions; EOS parametrized by K₀; momentum dependence P. Danielewicz, R. Lacey, W. G. Lynch, Science **298**,1592–1596 (2002)

Standard way of modeling the EOS: Skyrme potential

Agnieszka Sorensen

The most common form of the EOS is the "Skyrme potential": $U(n_B) = A\left(\frac{n_B}{n_0}\right) + B\left(\frac{n_B}{n_0}\right)^{\tau}$

P. Danielewicz, R. Lacey, W. G. Lynch, Science 298, 1592–1596 (2002), arXiv:nucl-th/0208016

Standard way of modeling the EOS: Skyrme potential

VDF model: relativistic potentials with two 1st order phase transitions

A. Sorensen, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635

Bayesian analysis: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential $U(n_B)$:

 $U(n_B) = \begin{cases} U_{\text{Sk}}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases}$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

Bayesian analysis: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential $U(n_B)$:

 $U(n_B) = \begin{cases} U_{\text{Sk}}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases}$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

Bayesian analysis: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

1-to-1 relation to the single-particle potential $U(n_B)$:

 $U(n_B) = \begin{cases} U_{\rm Sk}(n_B) & n_B < n_1 = 2n_0 \\ U_1(n_B) & n_1 < n_B < n_2 \\ \cdots & U_k(n_B) & n_k < n_B < n_{k+1} \end{cases} \stackrel{\bigcirc}{\to}$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, Phys. Rev. C **108**, 3, 034908 (2023), arXiv:2208.11996

The maximum a posteriori probability (MAP) parameters are $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$

Agnieszka Sorensen

Bayesian analysis of BES flow in BUU with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

The maximum a posteriori probability (MAP) parameters are $K_0 = 285 \pm 67 \text{ MeV}, \quad c_{[2,3]n_0}^2 = 0.49 \pm 0.13, \quad c_{[3,4]n_0}^2 = -0.03 \pm 0.15$

Agnieszka Sorensen

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Phys. Rev. C 108, 3, 034908 (2023), arXiv:2208.11996

EOS of symmetric nuclear matter: selected (*few*) results

Momentum-dependence of nuclear matter interactions

Bayesian analysis of flow data in UrQMD

proton mean transverse kinetic energy $\langle m_T \rangle - m_0$: $\sqrt{s_{\rm NN}} \in [3.83, 8.86] \text{ GeV}$

proton elliptic flow v_2 at midrapidity: $\sqrt{s_{\rm NN}} \in [2.24, 4.72] \text{ GeV}$

13 points = excluding $\langle m_T \rangle - m_0$ at the two lowest collision energies $\sqrt{s_{\rm NN}} = 3.83, 4.29 \,\,{\rm GeV}$

— — MEAN **—**—**—** MAP 250200 [MeV]150Experimental inference 13 data points 100 50 -50^{L}_{0}

300

Agnieszka Sorensen

M. Omana Kuttan, J. Steinheimer, K. Zhou, H. Stoecker, Phys. Rev. Lett. **131** 20, 202303 (2023) arXiv:2211.11670

$$V(n_B) = \begin{cases} V_{\text{CMF}} & n_B \le 2n_0 \\ \sum_{i=1}^7 \theta_i \left(\frac{n_B}{n_0} - 1\right)^i + C & n_B > 2n_0 \end{cases}$$

EOS of symmetric nuclear matter: selected (few) results

A. Sorensen *et al.*, Prog. Part. Nucl. Phys. **134**, 104080 (2024) arXiv:2301.13253

Agnieszka Sorensen

L. Du, **A. Sorensen**, M. Stephanov, Int. J. Mod. Phys. E (available online), arXiv: 2402.10183

The QCD critical point: recent theoretical developments

The QCD CP from finite-size scaling: universal behavior

 $c_{\infty}(t,0) \sim |t|^{-\alpha}$ Near CP: $\xi_{\infty}(t,0) \sim$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\xi_{\infty}(0,m)$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: $X_{\infty}($

Scaling is not unique to critical phenomena, e.g., Kepler's third law! The orbital period of a planet scales as the cube of the semi-major axis of its orbit:

 $P^{2} = a^{3}$

The important question for scaling is: what is the scale relevant to the problem?

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

The QCD CP from finite-size scaling: universal behavior

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity $X \sim |t|^{-\sigma}$: X_{∞} (

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 ξ is bound by the size of the system L $\Rightarrow X_I($

 $\Rightarrow X_{I}($

 $\Rightarrow X_L(t)$

Agnieszka Sorensen

$$(t) \sim |t|^{-\sigma} \sim \left[\xi_{\infty}(t)\right]^{\frac{\sigma}{\nu}}$$

$$(t_L) \sim L^{\frac{\sigma}{\nu}}$$

$$(t_L) = L^{\frac{\sigma}{\nu}} \phi(t, L) = L^{\frac{\sigma}{\nu}} \phi(tL^{\frac{1}{\nu}})$$

$$(t_L) L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

one can find CP by plotting

Finite size vs. window size

$X_I(t_I)L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$

Finite-size scaling (original): change the size of the system, calculate $X_I(t_I)$, repeat

However: changing SIZE is not always possible or doesn't probe the same system (bird flocks, heavy-ions)

Solution: study the dependence of X on the size of the *subsystem* that is considered

system size = rapidity window W, temperature, chemical potential

Agnieszka Sorensen

D. Martin, T. Ribeiro, S. Cannas, et al., Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

What are the scales relevant to the problem?

The QCD CP from finite-size scaling: Where can we expect scaling?

- For fluids far from the critical region, a mean-field treatment is good enough. contributions are small but finite.
- theory (hydrodynamics), the data follows Taylor's Law: $\sigma^2 = a\lambda^p$ (scale free)

Agnieszka Sorensen

The transition between the critical scaling region, intermediate scaling region, and extended scaling region has been studied: for fluids, the extended scaling region essentially covers the entire phase diagram where fluctuation

M.A. Anisimov, S.B. Kiselev, J.V. Sengers, S.Tang, Crossover approach to global critical phenomena in fluids, Physica A 188, 4 (1992)

• In the region of the phase diagram where the bulk of the evolution is well described by a scale free

$$C_{2} = aW^{p}$$

$$C_{2} = a(xW)^{p} = ax^{p}W^{p} = a$$
where $C_{1} \propto W$ in this energy rates

Scale invariance supports the applicability of FSS (not for collisions at 3 GeV)

"plausibility" (below $T_{pc}(\mu_B = 0)$ and above T_{fo})

Agnieszka Sorensen

 $\mu_{B,c} = 580 \pm 30 \text{ MeV}$

Summary

- New data from BES-II is here and/or imminent: see the next talk by Xin Dong

A. Sorensen et al., Prog. Part. Nucl. Phys. **134**, 104080 (2024) arXiv:2301.13253

Agnieszka Sorensen

• Multiple studies point to QCD CP in region of the phase diagram probed by BES FXT ($\sqrt{s_{NN}} \approx 4.5$ GeV)

Thank you for your attention

